本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

以下文章来源于碧茂大数据 ,作者碧茂大数据

 

明确三个步骤:

  • 确定问题 ,选择图形
  • 转换数据,应用函数
  • 参数设置,一目了然

下面 ,我们通过案例来进行演示:

%matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt #导入plt import seaborn as sns import warnings warnings.filterwarnings('ignore')#忽略警告

加载数据

数据采用kaggle中的共享单车项目,比赛提供了跨越两年的每小时共享单车租赁数据,包含天气信息和日期信息 。

字段说明

  • datetime(日期) - hourly date + timestamp
  • season(季节) - 1 = spring, 2 = summer, 3 = fall, 4 = winter
  • holiday(是否假日) - whether the day is considered a holiday
  • workingday(是否工作日) - whether the day is neither a weekend nor holiday
  • weather(天气等级)
  • Clear, Few clouds, Partly cloudy 清澈 ,少云 ,多云。
  • Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 雾+阴天,雾+碎云 、雾+少云、雾
  • Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 小雪、小雨+雷暴+多云,小雨+云
  • Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog 暴雨+冰雹+雷暴+雾 ,雪+雾
  • temp(温度) - temperature in Celsius
  • atemp(体感温度) - "feels like" temperature in Celsius
  • humidity(相对湿度) - relative humidity
  • windspeed(风速) - wind speed
  • casual(临时租赁数量) - number of non-registered user rentals initiated
  • registered(会员租赁数量) - number of registered user rentals initiated
  • count(总租赁数量) - number of total rentals
  • date(日期) - 由datetime拆分得到
  • hour(小时)-由datetime拆分得到
  • year(年份)-由datetime拆分得到
  • month(月份)-由datetime拆分得到
  • weeekday(周几)-由datetime拆分得到
  • windspeed_rfr(经过随机森林树填充0值得到的风速)

 

#读取数据 #Bikedata = pd.read_csv('./Bike.csv') Bikedata.head()

 

#查看描述统计 Bikedata.describe()

 

#接下来,我们通过相关系数的大小来依次对特征进行可视化分析 #首先,列出相关系数矩阵:df.corr() corrdf = Bikedata.corr() corrdf

 

大致可以看出:会员在工作日出行较多 ,节假日次数减少,而临时用户相反,第一季度出行人数总体偏低 ,出行人数受天气影响较大,会员在每天早晚有两个高峰期,对应上下班时间;非会员在下午出行较密集 风速对出行人数有较大的影响 相对湿度 ,温度和体感温度对非会员出行影响较大,对会员出行影响较小。

#接下来,我们通过相关系数的大小来依次对特征进行可视化分析 #首先 ,列出相关系数矩阵:df.corr() corrdf = Bikedata.corr() corrdf

 

#各特征按照与租赁总量count的相关系数大小进行排序 corrdf['count'].sort_values(ascending=False) count            1.000000 registered 0.966209 casual 0.704764 hour 0.405437 temp 0.385954 atemp 0.381967 year 0.234959 month 0.164673 season 0.159801 windspeed_rfr 0.111783 windspeed 0.106074 weekday 0.022602 holiday 0.002978 workingday -0.020764 weather -0.127519 humidity -0.317028 Name: count, dtype: float64

可见 ,特征对租赁总量的影响力为:

时段>温度>湿度>年份>月份>季节>天气>风速>工作日>节假日

对特征逐项分析

首先对时段进行分析

  • 第一步

提出问题:租赁总量对应湿度的变化趋势

适合图形:因为湿度属于连续性数值变量,我们可以选择折线图反应变化趋势

  • 第二步

转换数据:我们需要一个二维数据框,按照温度变化排序 ,取对应的三个租赁数的平均值

应用函数:直接应用plt的plot函数即可完成折线图

figure,axes = plt.subplots(1,2,sharey=True)#设置一个1*2的画布,且共享y轴 workingday_df.plot(figsize=(15,5),title='The average number of rentals initiated per hour in the working day',ax=axes[0]) nworkingday_df.plot(figsize=(15,5),title='The average number of rentals initiated per hour in the nworking day',ax=axes[1]) <matplotlib.axes._subplots.AxesSubplot at 0xe452940>

 

  • 第三步:设置参数
figure,axes = plt.subplots(1,2,sharey=True)#设置一个1*2的画布,且共享y轴 workingday_df.plot(figsize=(15,5),title='The average number of rentals initiated per hour in the working day',ax=axes[0]) nworkingday_df.plot(figsize=(15,5),title='The average number of rentals initiated per hour in the nworking day',ax=axes[1]) <matplotlib.axes._subplots.AxesSubplot at 0xe452940>

可以看出:

  • 在工作日 ,会员出行对应两个很明显的早晚高峰期,并且在中午会有一个小的高峰,可能对应中午外出就餐需求;
  • 工作日非会员用户出行高峰大概在下午三点;
  • 工作日会员出行次数远多于非会员用户;
  • 在周末 ,总体出行趋势一致,大部分用车发生在11-5点这段时间,早上五点为用车之最 。

对温度进行分析

  • 第一步

提出问题:租赁总量对应湿度的变化趋势

适合图形:因为湿度属于连续性数值变量 ,我们可以选择折线图反应变化趋势

  • 第二步

转换数据:我们需要一个二维数据框,按照温度变化排序,取对应的三个租赁数的平均值

应用函数:直接应用plt的plot函数即可完成折线图

  • 第三步

参数设置:只需要设置折线图的标题 ,其他参数默认

temp_df = Bikedata.groupby(['temp'],as_index='True').agg({'count':'mean','registered':'mean','casual':'mean'}) temp_df.plot(title = 'The average number of rentals initiated per hour changes with the temperature') <matplotlib.axes._subplots.AxesSubplot at 0xe57d7f0>

 

  • 随着温度的升高 ,租赁数量呈上升趋势;
  • 在温度达到35度时,因天气炎热,总体数量开始下降;
  • 在温度在4度时 ,租赁数达到最低点;

湿度对租赁数量的影响

  • 第一步

提出问题:租赁总量对应湿度的变化趋势

适合图形:因为湿度属于连续性数值变量,我们可以选择折线图反应变化趋势

  • 第二步

转换数据:我们需要一个二维数据框,按照温度变化排序 ,取对应的三个租赁数的平均值

应用函数:直接应用plt的plot函数即可完成折线图

  • 第三步

参数设置:只需要设置折线图的标题,其他参数默认

humidity_df = Bikedata.groupby(['humidity'],as_index=True).agg({'count':'mean','registered':'mean','casual':'mean'}) humidity_df.plot(title='Average number of rentals initiated per hour in different humidity') <matplotlib.axes._subplots.AxesSubplot at 0xe582400>

 

可以观察到在湿度20左右租赁数量迅速达到高峰值,此后缓慢递减。

年份 ,月份和季节作图方法类似,都采用折线图绘制,这里省略。

查看不同天气对出行情况的影响

  • 第一步

提出问题:租赁总量对应湿度的变化趋势

适合图形:因为天气情况属于数值型分类变量 ,我们可以选择柱形图观察数量分布

  • 第二步

转换数据:我们需要一个二维数据框,按照天气情况对租赁数量取平均值

应用函数:应用plt的plot.bar函数绘制组合柱形图

  • 第三步

参数设置:只需要设置折线图的标题,其他参数默认

weather_df = Bikedata.groupby(['weather'],as_index=True).agg({'registered':'mean','casual':'mean'}) weather_df.plot.bar(stacked=True,title='Average number of rentals initiated per hour in different weather') <matplotlib.axes._subplots.AxesSubplot at 0xe7e0a90>

 

观察到天气等级为4时 ,平均出行人数比天气等级为2时还要高 ,这不符合常理

我们查看一下天气等级为4的详细情况

count_weather = Bikedata.groupby('weather') count_weather[['casual','registered','count']].count()

 

天气状况为4级的只有一天,我们把数据打印出来查看一下

Bikedata[Bikedata['weather']==4]

 

时间为工作日的下午六点钟,属于晚高峰异常数据 ,不具有代表性 。

会员用户和临时用户在整体用户中占比

  • 第一步

提出问题:查看会员用户和临时用户在整体用户中的比例

适合图形:查看占比,适合用饼图pie

  • 第二步

转换数据:需要一个二维数据框,按天数取两种用户的平均值

应用函数:应用plt的plot.pie函数绘制饼图

  • 第三步

参数设置:这是数据标签和类别标签

#考虑到相同日期是否工作日 ,星期几,以及所属年份等信息是一样的,把租赁数据按天求和 ,其它日期类数据取平均值 day_df = Bikedata.groupby(['date'], as_index=False).agg({'casual':'sum','registered':'sum','count':'sum', 'workingday':'mean','weekday':'mean','holiday':'mean','year':'mean'}) day_df.head()

 

#按天取两种类型用户平均值 number_pei=day_df[['casual','registered']].mean() number_pei casual 517.411765 registered 2171.067031 dtype: float64 #绘制饼图 plt.axes(aspect='equal') plt.pie(number_pei, labels=['casual','registered'], autopct='%1.1f%%', pctdistance=0.6 , labeldistance=1.05 , radius=1 ) plt.title('Casual or registered in the total lease') Text(0.5,1,'Casual or registered in the total lease')

 

总结

  • 要清楚自己想表达什么,有了明确的问题,选择合适的图形 ,然后按照需求从整体数据中选择自己需要的数据,查阅资料了解函数的参数设置,最后完成图形的绘制
  • matplotlib是python绘图的基础 ,也是其他拓展包的基础 ,认真学习matplotlib的常用图形和参数是很有必要的
文章来源于网络,如有侵权请联系站长QQ61910465删除
本文版权归趣KUAI排www.SEOguruBlog.com 所有,如有转发请注明来出,竞价开户托管,seo优化请联系QQ→61910465