本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

以下文章来源于CDA数据分析师 ,作者:CDA数据分析师

 

前言

如果说冬天对北方人来说只是一个季节 ,而对南方人来说是一场“渡劫 ” 。北方的冷是干冷,物理攻击,多穿一点就好了。而且室内有暖气 ,在室内可以穿着短袖吃冰棍。

 

而南方的冷是湿冷,魔法攻击,穿再多没有用 。而且室内还没暖气 ,各种段子也是层出不穷:

“你在北方的暖气里四季如春 ,我在南方的寒冬下冻成冰棍儿”

“北方人过冬靠的是暖气,南方人过冬靠的是一身正气”

“我是一只来自北方的狼,来到南方却被冻成了狗 ”

 

一到冬天南方人除了靠一身浩然正气 ,空调 、电热毯、油汀、电暖气等各类花式取暖电器都得安排上。

内贸批发平台1688上获取的数据显示,进入11月以来,暖气片在南方城市的销量比去年同期增长了300% ,平台上取暖小家电品类整体营业额同比增幅达到200%,其中发热垫的同比增速甚至高达600%。

据显示,暖气片和暖气设备销量贡献最大的国内客户 ,主要都是来自长江沿线城市,以江浙沪 、安徽、湖南、湖北 、重庆 、四川等地居多,一时间“南方取暖设备被买爆”话题登上了微博热搜 ,让人不禁感叹南方人过个冬天实在是太难了 。

 

用Python分析全网取暖器数据

我们使用Python获取了淘宝网搜索关键词暖气片、取暖器、壁挂炉的商品数据,并进行了数据分析 。

读取数据

首先导入获取的数据。

# 导入工具包
import numpy as np 
import pandas as pd 

from pyecharts.charts import Bar, Pie, Map, Page
from pyecharts import options as opts

import jieba 

# 读取数据
df_all = pd.read_csv('../data/导出数据.csv')
df_all.head() 

 

 

df_all.shape
(13212, 7)

 

数据清洗和整理

此处我们需要对数据集进行数据清洗以便后续分析和可视化,主要工作内容如下:

  • 删除记录的重复值
  • goods_price列处理:提取数值
  • purchase_num列处理:提取数值
  • 计算销售额sales_volume = goods_price*purchase_num
  • 删除多余的列

代码实现如下:

df = df_all.copy()
# 去除重复值
df.drop_duplicates(inplace=True)
df.shape
(6849, 7)

# 筛选记录
df = df[df['purchase_num'].str.contains('人付款')]

# goods_price列处理
df['goods_price'] = df['goods_price'].str.extract('(\d+\.{0,1}\d*)')  
df['goods_price'] = df['goods_price'].astype('float')

# purchase_num列处理
df['num'] = df['purchase_num'].str.extract('(\d+\.{0,1}\d*)')
df['num'] = df['num'].astype('float') 
df['unit'] = [10000 if '' in i else 1 for i in df['purchase_num']]

# 计算销量
df['purchase_num'] = df['num'] * df['unit']

# 计算销售额
df['sales_volume'] = df['goods_price'] * df['purchase_num']

# 提取省份字段 
df['province_name'] = df['location'].astype('str').str.split(' ').apply(lambda x:x[0]) 

# 删除多余的列
df.drop(['num', 'unit', 'detail_url'], axis=1, inplace=True)

# 重置索引
df = df.reset_index(drop=True)
df.head() 

 

 

数据可视化

此处我们对店铺销量 、产地分布、商品价格等方面进行可视化分析:

市场上的取暖器种类较多 ,有暖风机、小太阳 、电热膜、油汀、快热炉 、踢脚线等取暖设备 ,我们首先看到这些取暖器的标题词云。

商品标题词云图

 

可以看到"取暖器" "暖风机" "暖气片"都是出现的高频词 。在特征方面"家用" "节能" "速热"都十分常见。

接着,看到店铺月销量排名Top10。

店铺月销量排名Top10

 

可以看到店铺销量前十,凯瑞莱旗舰店位居第一 。其后春尚电器专营店和苏宁易购分别是第二第三名。排在前十的还有美的、tcl等品牌。

# 计算top10店铺
shop_top10 = df.groupby('shop_name')['purchase_num'].sum().sort_values(ascending=False).head(10)

 

全国各省份产地销量排名Top10

 

这些取暖器的产地都在哪儿呢?经过分析发现 ,浙江是生产取暖器的头号大省,在产地销量排名中一骑绝尘位居第一 。之后排在第二位的是广东。湖南、江苏 、山东分别位居第三第四第五名。

# 计算销量top10
province_top10 = df.groupby('province_name')['purchase_num'].sum().sort_values(ascending=False).head(10)

 

不同价格区间的商品数量占比

 

取暖器都卖多少钱呢?经过分析发现,100元以下的商品是最多占比高达34.76% 。其次是200-500元的商品 ,占比22.09%。

不同价格区间的销量占比

 

与此同时,在销量方面,价格在100元以下和100-200元之间的取暖产品也是销量最好的 ,全网销售量分别占比37.49%和35.92%。

结语

有了各式各样的取暖器,南方冬天就好过了吗?并不,空调开久了干 ,踢脚线耗电高,油汀等电暖气更适合局部取暖,大空间制热效果差 。

虽然近年来也有很多南方家庭选择全房装地暖的 ,然而电暖用起来一个月电费就高达2、3千 ,这可能就是北方一个冬天的暖气费用了 。这么对比起来,似乎还是开空调和取暖器实在啊。

文章来源于网络,如有侵权请联系站长QQ61910465删除
本文版权归趣KUAI排www.SEOguruBlog.com 所有,如有转发请注明来出,竞价开户托管,seo优化请联系QQ→61910465